The effect of lixisenatide on post-prandial blood glucose and glucagon in type 1 diabetes C. Ballav¹, A. Dhere¹, O. Agbaje², I. Kennedy², R.R. Holman^{2,3}, K.R. Owen^{1,3}; ¹Oxford Centre for Diabetes Endocrinology and Metabolism, Oxford, ²Diabetes Trial Unit, Oxford, ³Oxford Biomedical Research Centre, Oxford, UK.

Background and aims: The glucagon-like peptide-1 receptor agonist, Lixisenatide (Lix), suppresses glucagon and reduces hyperglycaemia in type 2 diabetes. We studied the effect of Lix on post-prandial blood glucose (PPBG) and glucagon in type 1 diabetes (T1D).

Materials and methods: In a double-blinded, placebo-controlled, crossover study, 25 patients with T1D (13 females, mean \pm SE HbA_{1C} 65.6 \pm 8.1 mmol/mol, BMI 27.0 \pm 3.6 Kg/m²) received treatment in random order with Lix and placebo (Plac) in addition to their usual insulin therapy for four weeks, with a four week washout period in between. Participants had continuous glucose monitoring (CGM) for at least 3 days before and at the end of each treatment period, as well as post treatment standard mixed meal tests (MMT; Fortisip 360 Kcal) and hyperinsulinaemic hypoglycaemic clamps (target glucose 2.5 mmol/L). (See Figure). The primary outcome was defined as the proportion of CGM readings in the range 4 to 10 mmol/L during the 3-hour post-prandial period.

Results: The mean±SE percentage of PPBG CGM readings in range was similar before and after treatment and for each meal for Lix compared with Plac (breakfast 45.4 ± 6.0 vs. 44.3 ± 6.0 , p=0.9, lunch 45.5 ± 5.8 vs. 50.6 ± 5.3 , p=0.6, and dinner 43.0 ± 6.7 vs. 47.7 ± 5.6 , p=0.6). Mean HbA1c did not change during treatment periods and was similar between Lix and Plac (64.7 ± 1.6 vs. 64.1 ± 1.6 mmol/mol, p=0.3). The overall daily prandial insulin dose post-treatment was significantly less after Lix compared with Plac (-0.7 ± 0.6 vs. $+2.4\pm0.7$ units/day, p=0.004), but the total insulin dose was not different between treatments. The post MMT mean±SE 120 minute glucose area under the curve (AUC) was lower with Lix compared with Plac (392.0 ± 167.7 vs. 628.1 ± 132.5 mmol/L x min, p<0.001), as was the corresponding glucagon AUC (140.0 ± 110.0 vs. 304.2 ± 148.2 nmol/L x min, p<0.001). Glucagon values at a blood glucose level of 2.4 mmol/L during the hypoglycaemic clamp, were similar for Lix compared with Plac (3.1 ± 3.7 vs. 2.6 ± 1.7 nmol/L, p=0.7). Mean adrenaline, noradrenaline, cortisol and pancreatic polypeptide values did not differ during the clamp between Lix and Plac.

Conclusion: Lixisenatide suppresses glucagon and may reduce post prandial glycaemia without compromising counter-regulatory responses during hypoglycaemia in T1D.

Figure 1. Trial design (S: screening, R: Randomisation, d: day)

Clinical Trial Registration Number: ISRCTN no. 00290196 Supported by: Funding for this Investigator Sponsored research was provided by Sanofi Disclosure: **C. Ballav:** None.

789